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1. ASSOCIATIVITY UP TO HOMOTOPY

Given a binary operation (·, ·), we say that it is associative if (·, (·, ·)) =
((·, ·), ·). Sometimes we don’t have an associative operation but instead a
invertible map

φ : (·, (·, ·))→ ((·, ·), ·).
Using φ there are two ways to go from (·, (·, (·, ·))) to (((·, ·), ·), ·), see

figure 1. When those compositions coincide, and if we keep track on the
parenthesization, then this product is well defined1 as far as we remember
to use φ any time we want to change the order of composition.

(((·, ·), ·), ·)
((·, (·, ·)), ·)

((·, ·), (·, ·))

(·, ((·, ·), ·))
(·, (·, (·, ·)))

FIGURE 1. Vertices of the Stasheff polytope K2 are given by
ways to compose (·, ·) with itself 3 times. Edges are given
by ways to apply φ.

Today we will see another interesting property of K2, it’s cochain com-
plex has the structure of an associative algebra (up to homotopy). For the
cellular decomposition in figure 2 we define a binary operation m2 on co-
chains by the rules in figure 3, which should remind us of the usual cup
product 2. For example, the edge w has source b and target d, then

m2(b∗, w∗) = m2(w∗, d∗) = w∗,

while
m2(b∗, d∗) = 0, m2(w∗, b∗) = m2(d∗, w∗) = 0.

1Meaning that starting from (((· · · ((·, ·), ·), · · · ), ·) with an arbitrary number of compo-
sitions, we can use iterations of φ to end up with a position like (·, (· · · (·, (·, ·)) · · · ))) and
this is independent of all possible choices in the iteration of φ.

2Figures 2 and 3 were taken from [1].
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FIGURE 2. Cellular decomposition of K2.

FIGURE 3. Definition of m2, all empty entries are cero.

Notice that
m2(m2(u∗, b∗), y∗) = Z∗,

while
m2(u∗, m2(b∗, y∗)) = m2(u∗, 0) = 0.

So this product is non associative. The boundary map d of chains induces a
map d∗ on cochains (for example dw = b− d implies that d∗b∗ = u∗ − w∗),
and if we define m3 by

m3(u∗, w∗, y∗) = Z∗,

and m3(∗, ∗2, ∗3) = 0 for any other entries, then we can check that equation
(1) holds.
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d∗m3(id, id, id) + m3(d∗, id, id) + m3(id, d∗, id) + m3(id, id, d∗) =

= m2(m2(id, id), id)−m2(id, m2(id, id)),(1)

Remark 1.1. For an n-ary operation mn, n > 1 we define

∂mn = dmn + (−1)n−1 ∑ mn(id, · · · , id, d, id, · · · ).

Then (1) looks like ∂m3 = m2(m2(id, id), id)−m2(id, m2(id, id)).

We conclude m2 is not an associative product, but there is a homotopy
m3 that corrects its failure to be associative.

1.0.1. Massey products. We will introduce another example where the equa-
tion (1) naturally appears. Lets consider a differential graded associative
(DGA) algebra (A, dA) and a complex (V, dV) that is a homotopy retract of
A :

A
p
''h ��
V

i
gg

with Id − ip = dh + hd. The question that we will answer is: can we
induce any algebraic structure on the complex (V, dV)? We will work over
a field k, and it may be convenient to keep in mind the example when the
complex V is (H∗(A), d = 0).

A natural idea is to take two elements a, b ∈ V, then map them to A,
multiply their images with the operation mA of A and then send it back to
V. We represent this operation m2 (defined on V!) by a binary tree:

i i

mA
p

We cannot expect this new structure to be associative, but if we define
the following ternary operation m3 by the difference of trees:

m3 =

i

mA
p

i i

mA

h

-

i

mA
p

ii

mAh

,
then we can prove that ∂m3 = m2(m2, id)− m2(id, m2) (see remark 1.1).

So we end up with the same equation that in the previous example. When
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V = H∗(A), then we are claiming that there is a mysterious ternary opera-
tion in cohomology. If we take a, b, c cocycles so that

(−1)|a|m2(a, b) = dX, (−1)|b|m2(b, c) = dY,

then we can find X, Y so that hd(X) = X, hd(Y) = Y. After this choices

−m3(a, b, c) = −p(m2(h(m2(a, b)), c)) + p(m2(a, h(m2(b, c)))),

reduces to
(−1)|a|+|b|(m2(a, Y)−m2(X, c)),

so m3 give us a model for the Massey product.

Remark 1.2. The Massey product is defined only for cocycles that satisfy [a∪ b] =
0, [b ∪ c] = 0, and it is defined in the quotient H(A)/aH(A) + H(A)c. While
m3 is an operation defined for arbitrary cycles, and it depends of the homotopy h
in the sense that different choices may give different representatives of the Massey
product.

So far, starting from an DGA algebra A we induced a ternary operation
on V, actually by using all planar binary trees with n leaves we can create
an operation mn, for all n > 3, satisfying the following identity:

(2) ∂mn = ∑
s+j+r=n

(−1)s+jrmi(id, · · · , id, mj, id, · · · , id).

where in the summand (−1)s+jrmi(id, · · · , id, mj, id, · · · , id) the term mj
is located in the position s + 1 and i = s + 1 + r.

Definition 1.3. An A∞-algebra is a complex with n-ary operations mn : A⊗n →
A of degree n− 2 that satisfy equation (2) for all n > 1.

The following example comes from [2]. Lets consider an associative al-
gebra A, and the Hochschild cochains of A

C∗(A) = Hom(A⊗∗, A),

where the differential is given by

∂ f (a1, · · · , an+1) = a1 f (a2, · · · , an+1) + (−1)n+1 f (a1, · · · , an)an+1 +

+∑(−1)i f (a1, · · · , ai−1, aiai+1, ai+2, · · · , an+1),

Then a 3-cocycle g satisfies:

0 = a1g(a2, a3, a4)− g(a1a2, a3, a4) + g(a1, a2a3, a4)− g(a1, a2, a3a4)+

+g(a1, a2, a3)a4.
If we consider A[ε]/(ε)2 with degree ε = 1, and the product ·ε on A[ε]/(ε)2

induced by the product on A. Then m2 = ·ε, m3 = εg induces an A∞-
structure on A, because A is associative and the cocycle condition of g is
equivalent to (2) with n = 4.

If instead we consider a variable εn of degree n − 2, and we take g ∈
Cn(A) a Hochschild cocyle, then (A[εn]/(εn)2, m2 = ·ε, mn = εg) is an A∞-
algebra.
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We saw before that when A is a DGA algebra, H∗(A) inherits the struc-
ture of A∞-algebra. The maps H(A)⊗n → H(A) are called A∞-Massey
products in [3].

In fact if we start with an A∞-algebra structure on A then we will induce
an A∞-structure on V.

Definition 1.4. An A∞-morphism between A∞-algebras (A, mi) and (B, m′i) is
a sequence of degree n− 1 maps fn satisfying: ∂( fn) =

= ∑(−1)p+qr fk ◦ (id, · · · , id, mq, id, · · · , id)−∑(−1)εmk ◦ ( fi1 , fi2 , · · · , fik),

Where f1 is a map of complexes, in the summands fk ◦ (id, · · · , id, mq, id, · · · , id)
mq is located in the p + 1 position and i = p + 1 + r, ε = (k − 1)(i1 − 1) +
(k− 2)(i2 − 1) + · · ·+ (1)(ik − 1).

So when all higher maps vanish we get f1(dA) = dB f1 and f1(m2) =
m′2( f1, f1). Then a map of DGA algebras is in particular a map of A∞-
algebras.

Theorem 1.5. Let (A, dA) be an A∞-algebra and a complex (V, dV) that is a
homotopy retract of A :

A
p
''h ��
V

i
gg

satisfying Id − ip = dh + hd, with i a quasi-isomorphism. Then V inherits an
A∞ structure and i extends to an A∞ map that is a quasi isomorphism.

1.0.2. Formality. A Differential Graded Associative algebras is formal if there
is a zig zag of quasi isomorphims of DGA algebras: (A, d) ← · · · →
(H(A), 0).

Theorem 1.6. If for a choice of the retraction

A
p
--h ��
H∗(A)

i

ii

with i a quasi isomorphim, the higher A∞-Massey products vanish, then the alge-
bra is formal.

Proof:We saw that any homotopy retraction will induce a quasi isomor-
phism as A∞-algebras, if there is h so that the A∞ products vanish for n > 2,
then the map is actually a map of DGA algebras.

On the other hand if a minimal DGA algebra is formal, then the higher
Massey products (n ≥ 3) vanish (see [4]).

In the proof of theorem 1.6 the homotopy h, determines all higher Massey
products, and to request that for that choice of the homotopy all higher
Massey products vanishes can be paraphrased as “one may make uniform
choices so that the form representing all Massey products and higher Massey
products are exact”. This is stronger than asking each individual Massey
products to vanish.
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2. ADDENDUM

I want to add a recent application of the Massey product to show that
something is not formal. All the words that appear here will eventually be
defined in the seminar.

Let O be a topological operad. We consider C∗(O) singular chains com-
plex on O and H∗(O) its homology3. If there are cycles a, b, c so that a ◦i b =
dx, b ◦j c = dy, then

< a, b, c >:= x ◦i+j−1 c− (−1)|a|a ◦i y,

satisfies d < a, b, c >= 0. We compose in the i + j− 1 entry to make sure
this is a cycle.

Its class [< a, b, c >] in cohomology is called the Massey Operadic pro-
duct (of type I). Professor Muriel Livernet proved in 2014 [5] the following
theorem:

Theorem 2.1. If there exist cycles a, b, c in C∗(O) such that < a, b, c > 6= 0 and
if H|a|+|b|+1(O) = H|b|+|c|+1(O) = 0, then O is not formal.

Sketch: Here the idea is that if we have a roof

P
f

||

g

""
C∗(O) H∗(O)

we lift the Massey product to P and then show that g cannot be a quasi
isomorphism for degree reasons.

We lift those cycles a, b, c to ap, bp, cp ∈ P∗. It may happen that f (ap) = a1,
when a1 − a = ds, but we can show that [< a1, b1, c1 >] does not vanish
neither. Because f is quasi isomorphism, in P we will also have ap ◦i bp =
dxp, bp ◦j cp = dyp and [< ap, bp, cp >] is non vanishing because its image
[< a1, b1, c1 >] is non vanishing. Then g([< ap, bp, cp >]) won’t vanish. On
the other hand g(x) ∈ H|a|+|b|+1(O) = 0, and it is the same with g(y), it
follows that g([< ap, bp, cp >]) = 0 which is a contradiction.

From here follows non formality of Swiss Cheese operad for d > 3
by finding explicit Massey operadic products. How to find those explicit
Massey products? maybe it may help to talk about the case d = 2 which
uses the so called ”Eye Law”.

Consider the upper half plane H on C together with the real line. And
consider the space of different points a, b ∈ H module the action of the
group x → rx + s, r, s ∈ R, r > 0. It will be clear in the future that there is
a compactification of this space (lets call it the “Eye”), where the boundary
is given by allowing those two points to collide or to go to infinity.

Lets assume that a is mapped to i, then if b approaches a, different angles
will give different points in the boundary of the Eye (and form the pupil).

3From now on we are following definitions and notations of [5].
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FIGURE 4. Compactification of the space of 2 points in the
upper plane. See [6].

The other boundary below is given by letting b go to the real line (forming
the lower eyelid), or to ∞, which we prefer to think as sending b to i and
letting a go to the real line (forming the upper eyelid).

To describe the Eye Law assume we move around the pupil, then the
two points turn around each other in H. If instead we move around the
eyelids, then a is in H while b in R, moving from −∞ to ∞, eventually a
falls to the real line with a < b and then b goes to H, while a moves from ∞
to −∞, then b falls to the real line with b < a, and we return to the original
position.

Assuming a map from the operad of Swiss Cheese to its cohomology, in
[5] they found chains f ◦ l and < a; f , f >I I , with f ◦ l resembling the two
points rotating in H around each other, and < a; f , f >I I describing the
external boundary of the ”eye” where <,>I I is a variant of the operadic
Massey product. Because of the pupil and the eyelids are boundary of a
2-cell, there is a homotopy m so that ∂m = ± < a; f , f > ± f ◦ l. We could
see that f ◦ l is non trivial, and so the product < a; f , f >I I does not vanish.
But for the same argument about the degree that we used before, the image
of < a; f , f >I I in homology of the Swiss Cheese goes to zero, giving a
contradiction.
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