Braid groups actions on Categories.

Eric Dolores

December 2013

This are my notes of Licata's course 'Braid group actions on categories', for the seminar:Associators, Formality and Invariants at NU.

There are typos and probably some statements/proofs are not correct, I take responsability for that. I appreciate the help of $\mathbb{R}\mathbb{R}$, from ECNU, Shanghai.

0.1 Semisimple lie algebras.

Let Γ be a finite graph without multiple edges $\ast \infty$ \ast and no loops, we denote by I its vertex set, and by E its edge set.

In particular we will consider simply laced Dynkin diagrams:

$$
\bullet \ \ E_{8} \ \ast \underline{\hspace{1cm}} \ast \
$$

To Γ we associate the Weyl group:

$$
W_{\gamma} = \langle s_i | s_i^2 = 1, \frac{s_i s_j = s_j s_i, \ i, j \notin E, \frac{s_i s_j = s_j s_i s_j, \ i, j \in E} \rangle_{i \in I}
$$

For example, when $\Gamma = A_1 = *$, then

$$
W_{\Gamma} = \langle s | s^2 = 1 \rangle \sim Z/2Z.
$$

and when $\Gamma = A_{n-1}$,

$$
W_{\Gamma} \sim S_n,
$$

$$
s_i \to (i \ \ i+1).
$$

Question. For which Γ is $|W_{\Gamma}| < \infty$?¹

Answer: Theorem [Coxeter] W_{Γ} is finite iff every connected component of Γ is of the kind A, D or E .

Let B_{Γ} the Artin Tier Braid group defined by the braid relations

$$
\langle \sigma_i \sigma_j = \sigma_j \sigma_i, \quad i, j \notin E,
$$

$$
\langle \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j, \quad i, j \in E \rangle_{i \in I}.
$$

Lets denote

$$
\pi: B_{\Gamma} \to W_{\Gamma}.
$$

Let B_p^+ be the monoid presented by $\{\sigma_i\}$ braid relations }, we also have a morphism of monoids

$$
\kappa: B_p^+ \to B_p.
$$

It is not obvious that κ is injective, as it turns out to be², and we can consider the so called positive braids $\kappa(B_p^+) = B_p^+ \subset B_p$. We have the following diagram:

¹It is easy to see that it suffices to consider Γ connected, as $\Gamma \simeq \Gamma_1 \cup \Gamma_2$ implies $W_{\Gamma} \simeq W_{\Gamma_1} \times W_{\Gamma_2}.$

 2 Proven by Deligne in ADE case, and by Palis in general (2005).

Where $\rho: W_{\Gamma} \to B_{\Gamma}^+$ $_{\Gamma}^{+}$ is a map of sets defined as follows:

Given $w \in W$ write it $w = s_{i_1} \cdots s_{i_k}$, k small as possible, that is $k = l(w)$ minimal lenght, then $\rho(w) = \sigma_{i_1} \cdots \sigma_{i_k}$.

0.1.1 Note:

$$
\rho(1) = 1, \qquad l(1) = 0;
$$

\n
$$
\rho(s_i) = \sigma_i, \qquad l(s_i) = 1;
$$

\n
$$
1 = s_i s_i \subset W,
$$

\n
$$
1 = \rho(1) \neq \rho(s_1 s_1) = \sigma_i^2 \subset B_\Gamma
$$

0.1.2 Examples:

- If $\Gamma = A_1, W_{A_1} \sim Z/2Z, B_{A_1} \sim Z$.
- What distinguishes B_{Γ} when $\Gamma = A, D, E$ form other cases? Conjecture: $Z(B_{\Gamma}) \neq 0$ iff $\Gamma =$ type A, D, E . ³
- If $\Gamma = A_{n-1}, B_{A_{n-1}}$ is topological in nature, it occurs as a mapping class group:

Lets consider the disk with n market points $(D, \{y_1, \dots, y_n\})$.

Lets fix "nice" paths $c_i : y_i \to y_{i+1}$.

³It is known that $Z(B_{\Gamma}) = Z, \Gamma = A, D, E$. In fact there is an element $w_0 \in W_{\Gamma}, \rho(w_0) =$ $\triangle \in B_{\Gamma}^{+}, Z(B_{\Gamma}) = \triangle^{2}.$

 $B_{A_{n-1}} \sim MCG(D, \{y_1, \cdots, y_n\}, \partial D)$ $=$ { homomorphisms $\, : D \to D, \,$ which are id on ∂D and preserve the set $\{y_1, \dots, y_n\}\}$ /isotopy.

The isomorphism is given by: σ_i is sent to half Denh twist of c_i clockwise, notice that this permutes the set $\{y_i\}$. so given a curve d:

then we obtain:

Alternatively,
\n
$$
B_{A_{n-1}} = \pi_1(P_n; \{y_1, \dots, y_n\}), \text{ where}
$$
\n
$$
P_n = D^{\times n} - \bigcup_{i \neq j} \{(x_1, \dots, x_n) | x_i = x_j\}/S_n.
$$

0.2 A representation of W_{Γ}

Let $V_Z = \text{span}_Z\{p_i\}_{i \in I}$, $V_Q = V_Z \times Q = \text{span}_Q\{p_i\}_{i \in I}$. We'll define a map of W_{Γ} on V_Q (and V_Z) as follows: For $i \in I$, define $q_i : V_Z \to Z$ by

$$
q_i(p_j) = \begin{cases} -2 \text{ if } i = j, \\ 1 \text{ if } i, j \in E, \\ 0 \text{ if } i, j \notin E. \end{cases}
$$

(Cartan Matrix).

We define a map $\rho: W_{\Gamma} \to End(V)$ by $\rho(s_i) = 1 + p_i q_i$

0.2.1 Exercise

Check that $\rho(s_i)\rho(s_i) = 1$ (as expected since $s_i^2 = 1$) and that ρ defines a representation of W_{Γ} . Compare with Note(0.1.1).

Theorem. The Representation $\rho: W_{\Gamma} \to GL(V)$ is faithful (ρ is injective). How to construct a representation of B_{Γ} ?

Let $V_{Z[t,t^{-1}]} = Span_{Z[t,t^{-1}]}(p_i)_{i \in I}$, $V_{Q[t]} = V_{Z[t,t^{-1}]} \otimes_{Z[t,t^{-1}]} Q(t)$. Define $q_i: V_{Z[t,t^{-1}]} \to Z[t,t^{-1}]$ by

$$
q_i(p_j) = \begin{cases} t + t^{-1} & \text{if } (i = j) \\ 1 & \text{if } i, j \in E, \\ 0 & \text{if } i, j \notin E. \end{cases}
$$

similarly, define

 $\rho(\sigma_i): V_t \to V_t$ by

$$
\rho(\sigma_i) = 1 - tp_iq_i, \rho(\sigma_i^{-1}) = 1 - t^{-1}p_iq_i.
$$

t deformation from V_Z to $V_{Z[t,t^{-1}]}$.

It follows that $\rho(\sigma_i) \rho(\sigma_i^{-1})$ i^{-1}) = 1.

This is the Reduced Brauer representation of B_{Γ} , sadly, the reduced Brauer representation is almost never faithful: For A_1, A_2 it is faithful, for $A_n, n > 3$ it is not faithful, and it is not know for A_3 .

length	element
3	$s_1s_2s_1 = s_2s_1s_2,$
\mathcal{D}	$s_1s_2, s_2s_1,$
	$S_1, S_2,$

Table 1: Bruhat lenght on W_{Γ} .

How can one find a better situation to study B_{Γ} ? linear structure?

Lets try to find a faithful representation of B_{Γ} in some other vector spaces, Bigelew, Krammer and others provide such a vector space, which is infinite dimensional unless Γ is ADE.

We will try to find a representation of B_{Γ} in a linear category related to Brauer representation.

Problem: Compute the center of B_{Γ} , is B_{Γ} torsion free? (known in type ADE)

Brauer representation of $B_{A_{n-1}}$ is closely related to the appear of $B_{A_{n-1}}$ as a $MCG(X_n)$.

Up shot: Brauer representation is related to the topology of X_n . Let's calculate

$$
\Gamma = A_2,
$$

\n
$$
V = spam\{p_1, p_2\},
$$

\n
$$
W_{A_2} = \{e, s_1, s_2, s_1s_2, s_2s_1, s_1s_2s_1\},
$$

\n
$$
= S_3,
$$

\n
$$
\psi(s_1)(p_1) = -p_1,
$$

\n
$$
\psi(s_1)(p_2) = p_2 + p_1.
$$

We need the Bruhat lengh on W_{Γ} :

It has the following proprety: given $w \in W_{\Gamma}$, if $l(w) = k$ then $l(ws_1) = k$ $l(w) + 1$ or $l(ws_1) = l(w) - 1$.

Proposition: For all $w \in W_{\Gamma}$, $i \in I$, $l(ws_i) > l(w)$ implies $wp_i > 0$. $l(ws_i) < l(w)$ implies $w\dot{p}_i < 0$.

Proof: Exercise.

Now let $p = \sum p_i \in U$. Corollary (Bjorner-Bruti):

$$
\{s_i|c_i < 0 \text{ with } wp = \sum c_i p_i\} = \{s_i | l(ws_i) < l(w)\} := D(w) \subset \{s_i\}_{i \in I}
$$

If $u \neq e$ then $up \neq p$ (as $D(w) = \emptyset$.)

1 Second Day.

Categorical Braid Group Actions.

Let G be a group and C a category, by a weak action of G on C we mean: $g \in G \longrightarrow F_q : C \to C$, for $g, h \in G : F_f F_h \simeq F_{fh}$ $F_1 = Id$.

where \simeq means that there is a natural transformation.

A genuine action require a little bit more, namely the commutativity up to a natural transformation of:

1.1 Zig Zag Algebra A_{Γ}

Let Γ be a finite graph, and consider $\overline{\Gamma}$ the double quiver of Γ . That is substitute any edge by 2 oriented edges in opposite directions.

Let Path($\bar{\Gamma}$) denote the Path algebra of $\bar{\Gamma}$, span_C{ finite lenght paths in Γ . A path x is completely determined by specifying the vertex you travel to, along x .

1.1.1 Example

 $(a|b|c|b|d)$ describes $a \rightarrow b \rightarrow d$, while the constant path is $(d) = e_d$, notice c that $e_d e_d = e_d$ ⁴, and that if there is at least one edge, then the algebra has

⁴Multiplication in Path is concatenation of paths: $(a|b|c)(x|y) = (a|b|c|y)$ if $x = c$ or $(a|b|c)(x|y) = 0$ otherwise.

infinite elements.

Path lenght induces a grading on $Path(\overline{\Gamma})$. Definition:

- For $\Gamma = *$, let $A_{\Gamma} = C[x]/x^2$, deg $x = 2$.
- For $\Gamma = * *$, let $A_{\Gamma} = Path(\overline{\Gamma})/\{\text{ all length 3 paths}\}.$
- For any other Γ, let A_{Γ} be a quotient of $\text{Path}(\overline{\Gamma})$ by the 2 sided ideal generated by:

 $(a|b|c) = 0$ if $a \neq c$,

 $(a|b|a) = (a|c|a)$ when $b \neq c$ are both connected to a.

 A_{Γ} ⁵ is a finite dimentional graded C algebra. Facts about A_{Γ} :

- A_{Γ} is a symmetrical algebra.
- A_{Γ} is Koszul iff Γ is not a finite type ADE.

1.1.2 Exercise: compute its graded dimension.

Let e_i be the idempotent (lenght 0 path at $i \in I$), $e_i e_j = \delta e_i \in A_{\Gamma}$.

Set $P_i = A_\Gamma e_i = span_{\Gamma}$ path which ended at i, it is a graded left A_{Γ} – mod and $Q_i = e_i A_{\Gamma} = span_{C}$ (path which starts at i), it is a graded right A_{Γ} – mod. From now on Vect denotes the category of graded C vector spaces.

One can associate to P_i a functor

$$
F_{P_i}: Vect \rightarrow A - \Gamma Mods
$$

$$
V \rightarrow P_i \otimes_C V
$$

$$
F_{Q_i}: A - \Gamma Mods \rightarrow Vect
$$

$$
M \rightarrow Q_i \otimes_C M
$$

From now on we are going to switch the internal degree of A_{γ} by 1, in such a way that the idempotent e_i has degree -1, $e_i e_{i+1}$ has degree 0 etc.

⁵ this skew version give us a formal neighborhod

Lets compute

$$
Q_i P_j := Q_i \otimes_{A_\Gamma} P_j = \begin{cases} C < -1 > \oplus C < 1 > & i = j \\ C & i, j \in E \\ 0 & i, j \notin E \end{cases}
$$

We denote by $Com(A_{\Gamma} - mod)$ the homotopy category of complexes of A_{Γ} modules. Lets remember that $Kom(A)$ has as Objects complex of A_{Γ} mod, $\cdot M_i \longrightarrow N_{i+1} \longrightarrow N_{i+1}$, where the boundary maps are homogeneous of degree 0. This is an abelian category. Lets consider Null hom:= the set of hull homotopic chain maps, and we define $Com(A_{\Gamma} - mod) = Kom(A - \Gamma$ $mod)/(nullhom).$

Example: $x := 0 \longrightarrow C \longrightarrow C \longrightarrow 0 \longrightarrow \cdots$

$$
y := 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots
$$

 $x \neq y \in Kom, x \simeq y \in Com.$

Goal:we are going to construct an action in $Com(A_{\Gamma})$ of the braid group, we need:

$$
\Phi_i \Phi_j = \Phi_j \Phi_i \ i, j \notin E
$$

$$
\Phi_i, \Phi_i^{-1} | \Phi_i \Phi_j \Phi_i = \Phi_j \Phi_i \Phi_j \ i, j \in E
$$

$$
\Phi_i^{-1} \Phi_i \simeq \begin{array}{rcl}\n\Phi_i & \Phi_i^{-1}, \\
\omega & \Phi_i \Phi_i^{-1},\n\end{array}
$$

since we are working with groups we also need Φ_i to be equivalence of categories.

How to proceed? to get functors $F: Com(A_{\Gamma}) \rightarrow Com(A_{\Gamma})$ we consider complexes of (A_{Γ}, A_{Γ}) – bimodules.

Goal: for each $i \in I$ to define a complex of (A_{Γ}, A_{Γ}) -bimodules B_i^* and from them obtain a functor:

$$
\Phi_i = B_i^* \otimes \ldots Com(A_{\Gamma}) \to Com(A_{\Gamma}).
$$

1.1.3 Examples of (A_{Γ}, A_{Γ}) bimodules.

 A_{Γ} itself, the corresponding fucntor $A_{\Gamma} \otimes_{A_{\Gamma}} I$ is naturally equivalent to the Id, so we will refer to it as Id from now on.

 $P_i \otimes_C Q_j$ is another $A_{\Gamma} - A_{\Gamma}$ bimod while $Q_j \otimes_C P_i \in (C, C)$ bimod.

Looking at the Brauer representation, We want to categorize $\sigma_i = 1 - tp_i q_i$, and a general Yoga tell us that minus signs lead us to complexes, lets consider:

$$
B_i = \left\{0 \longrightarrow 0 \longrightarrow A_\Gamma \longrightarrow P_i Q_i < 1 > \longrightarrow 0\right\},\,
$$

$$
B_i' = \{0 \longrightarrow P_i Q_i < -1 > \longrightarrow A_\Gamma \longrightarrow 0 \longrightarrow 0\}
$$

$$
\Phi_i=B_i\otimes\Box, \Phi_i^{-1}=B_i'\otimes\Box,
$$

Notice that we will have a double grading, $A < n > |m|$ means that the elements of the algebra have degree n and as a complex, it is located at m . Also, in the case of B_i , B_i' both grading coincide.

 $Hom_{(A_{\Gamma},A_{\Gamma})}(P_iQ_i < -1 > A_{\Gamma}) \simeq C$ as by definition we have to construct a map from $A_\Gamma e_i \otimes_C e_i A_\Gamma \to A_\Gamma$, $x \otimes y \mapsto xy$.

By adjuntion properties $Hom_{(A_{\Gamma},A_{\Gamma})}(A_{\Gamma},P_iQ_i<1>) \simeq C$ as well. How to check that we satisfy the Braid relations? We need to prove $\Phi \otimes_{A_{\Gamma}} \Phi^{-1} \simeq Id$.

1.1.4 Exercise

Let B be a (R-S)bimodule, and $F_B = B \otimes \dots \otimes S - Mod \rightarrow R - Mod.$ $f : B \to B'$ a bimod map. Then f induces a natural transformation of functors $F_f: F_B \to F_{B'}$.

It suffices to check that

 $B_i \otimes_{A_\Gamma} B_i' \simeq A_\Gamma = Id = B_i' \otimes_{A_\Gamma} B_i$ in the homotopic category of (A_Γ, A_Γ) bimodules.

Similarly

$$
B_i \otimes_{A_{\Gamma}} B_j \otimes_{A_{\Gamma}} B_i \simeq B_j \otimes_{A_{\Gamma}} B_i \otimes_{A_{\Gamma}} B_j, \ i, j \in E \tag{1}
$$

$$
B_i \otimes_{A_\Gamma} B_j \simeq B_j \otimes_{A_\Gamma} B_i, \ i, j \notin E. \tag{2}
$$

which is due to Khovanov-Seidel, Rouquier Zimmermann, circa 2001.

1.2 Third day.

Theorem [Khovanov-Seidel, Rouquier Zimmermann, circa 2001.] (1) and (2) hold, and

 $B_i \otimes_{A_\Gamma} B_i' \simeq A_\Gamma \simeq B_i' \otimes_{A_\Gamma} B_i.$ This implies that the braid group B_{Γ} acts on $Com(A_{\Gamma})$ –mods. Sketch: We will need an auxiliar result: Proposition (Gauss elimination) Let \cdot $\sqrt{ }$ \mathcal{L} u_x u_y \setminus $\overline{1}$ $\sqrt{ }$ \mathcal{L} f g h k \setminus $\overline{1}$ $\left(\begin{array}{cc} u_x & u_y \end{array}\right)$

 $\mathbf{X} \oplus \mathbf{Y}$ $\overline{X} \oplus \widetilde{Y}'$ $V \longrightarrow$ and suppose that $f : X \longrightarrow$ X is an isomorphism, then this complex is isomorphic in the homotopy category to:

 $U \longrightarrow Y \xrightarrow{k-hf^{-1}g} Y' \longrightarrow V \longrightarrow$

Now lets make some calculations:

$$
B_i B'_i = (P_i Q_i < -1 \rightarrow A_\Gamma) \otimes_{A_\Gamma} (A_\Gamma \rightarrow P_i Q_i < 1>)
$$

\n
$$
= P_i Q_i < -1 \rightarrow P_i (Q_i P_i) Q_i \oplus A_\Gamma \rightarrow P_i Q_i < 1)
$$

\n
$$
= P_i Q_i < -1 \rightarrow P_i (C < 1 \rightarrow \oplus C < -1 \rightarrow) Q_i \oplus A_\Gamma \rightarrow P_i Q_i < 1)
$$

\n
$$
= P_i Q_i < -1 \rightarrow P_i Q_i < 1 \rightarrow \oplus P_i Q_i < -1 \rightarrow \oplus A_\Gamma \rightarrow P_i Q_i < 1>
$$

\n
$$
= 0 \rightarrow A_\Gamma \rightarrow 0
$$

Where we used the previous proposition, it is important to check that infact the corresponding maps are isomorphisms so that we can substitue the complex for an homotopical one. In a similar way it is proven that $B_i'B_i \simeq A_\Gamma.$

Now suppose $i, j \notin E$,

$$
B_i B_j = (P_i Q_i < -1 \rightarrow A_\Gamma) \otimes_{A_\Gamma} (P_i Q_i < -1 \rightarrow A_\Gamma)
$$

\n
$$
= (P_i (Q_i P_j) Q_j < -2 \rightarrow P_i Q_i < -1 \rightarrow \oplus P_j Q_j < -1 \rightarrow A_\Gamma)
$$

\n
$$
= 0 \rightarrow P_i Q_i < -1 \rightarrow \oplus P_j Q_j < -1 \rightarrow A_\Gamma)
$$

\n
$$
= B_j B_i
$$

and finally, lets suppose $i,j\in E$:

$$
B_i B_j B_i = (P_i Q_i < -1 \rightarrow A_\Gamma) \otimes_{A_\Gamma} (P_j Q_j < -1 \rightarrow A_\Gamma) \otimes_{A_\Gamma} (P_i Q_i < -1 \rightarrow A_\Gamma)
$$

$$
P_i(Q_iP_i)Q_i \le -2 & P_iQ_i \le -1 >
$$
\n
$$
\Leftrightarrow
$$
\n
$$
P_i(Q_iP_j)(Q_jP_i)Q_i \le -3 > \longrightarrow P_i(Q_iP_j)Q_j \le -2 > \longrightarrow P_jQ_j \le -1 > \longrightarrow A_\Gamma
$$
\n
$$
\Leftrightarrow
$$
\n
$$
P_j(Q_jP_i)Q_i \le -2 > P_iQ_i \le -1 > \longrightarrow A_\Gamma
$$
\n
$$
\Leftrightarrow
$$
\n
$$
P_iQ_i \le -2 > P_iQ_j \le -1 > \longrightarrow A_\Gamma
$$
\n
$$
\Leftrightarrow
$$
\n
$$
P_jQ_i \le -2 > \longrightarrow P_iQ_j \le -1 > \longrightarrow A_\Gamma
$$
\n
$$
\Leftrightarrow
$$
\n
$$
P_jQ_i \le -2 > P_iQ_i \le -1 > \longrightarrow A_\Gamma
$$
\n
$$
\Leftrightarrow
$$
\n
$$
P_iQ_i \le -1 > \longrightarrow A_\Gamma
$$
\n
$$
\Leftrightarrow
$$
\n
$$
P_jQ_i \le -2 > \longrightarrow P_jQ_j \le -1 > \longrightarrow A_\Gamma
$$
\n
$$
\Leftrightarrow
$$
\n
$$
P_jQ_i \le -2 > P_iQ_i \le -1 > \longrightarrow A_\Gamma
$$
\n
$$
\Leftrightarrow
$$
\n
$$
P_jQ_i \le -2 > P_iQ_i \le -1 > \longrightarrow A_\Gamma
$$
\n
$$
= B_jB_iB_j.
$$

1.2.1 Example

:

Let $\Gamma = * - * - * = A_3$, so we have $P_1, P_2, P_3 \in Com(A_{\Gamma} - Mod)$, and we got the table:

Theorem: (Khovanov-Seidel) If Γ is type A then the braid group action is faithful, that is $\Phi_B \simeq Id$ iff $B \simeq 1 \in B_{A_n}$.

To prove it, lets rememeber the action of B_A on Mapping Class Group see (0.1.2).

1.2.2 Example:

Let c be a curve in D with end points on the market points. Morally, to c we assign $P(c) \in Com(A_{\Gamma} - Mod)$ as follows: We give an orientation to c lines counter clockwise. And we assign projective mods to the intersection with the vertical lines, under some rules an internal degree shift is assigned, and this give us

we obtain a map from

{ curves D with end points on marked points} \rightarrow { complexes of A_Γ $-Mod$ }

and notice that B_{Γ} acts in both sets, the theorem is that this assignment interwines the 2 actions. As a corollary, the KSRZ action is faithful in type A_n .

Proof:(Sketch) Let $\beta \in B_{\Gamma}$ such that β acts as Id in KSRZ, so $\beta(P_i) \simeq$ $P_i \forall i$. then (Purely topological argument):

 $\beta(c_i) = c_i$, in MCG. So we are looking for brands β that take all c_i to itself, it turns out that β commutes with Dehn twist, but since they are generators this is equivalent to say that β is central, so it is a power of Δ^{2k} , but this acts by shifts so $\beta = \delta^0 = 1$.

Note: the decategorified action, is not faithful, that is, if we pass to Grothendieck group, then we get the Burau representation which is not faithful.

1.2.3 Conjecture:

The action of B_{Γ} is faithful for all Γ . So far we know that the action is faithful for γ ADE (Brav-Thomas).

Let B_{Γ}^+ denote the positive braid monoid:

$$
B_{\Gamma} = \langle \sigma_i | \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } i, j \notin E, \sigma_j \sigma_i \sigma_j = \sigma_i \sigma_j \sigma_i \text{ if } i, j \in E \rangle.
$$

There is (an injective) monoid morphism:

$$
\begin{array}{ccc}\n\sigma_i & \in B^+ \\
\bigvee_{N}^* & & \bigvee_{S_i}^* \\
\vdots & & \in W_{\Gamma}\n\end{array}
$$

where e is a morphism of sets defined as follows: given $w \in W$, write it in reduced expression as a product of generators $w = s_{i_1} \cdots s_{i_k}$, $l(w) = k$ is sent to $e(w) = \sigma_{i_1} \cdots \sigma_{i_k}$.

An important construction in Braid theory is the Garside normal form of a positive braid $\beta \in B_{\Gamma}^+$ Γ :

We say that β' is a right factor of β if $\beta = \beta''\beta'$ with $l(\beta) = l(\beta'') + l(\beta')$ $l(\beta'), l(\beta) = min_k \{\beta = \sigma_{i_1} \cdots \sigma_{i_k} \}.$

Garside proved that any positive braid $\beta \in B^+$ has a unique longest right factor of the form $e(w)$, $w \in W$. So once we have $e(w_1)$ the unique longuest right factor of β in $Im(e)$ we continue inductively to get the Garside normal form $\beta = e(w_k)e(w_{k-1})\cdots e(w_1)$, in this case we define the Garside lenght of β as $Gl(\beta) = k$.

Remark: this is defined only for positive braids $\beta \in B_{\Gamma}^+$ Γ .

1.2.4 Examples:

- $Gl(\sigma_1\sigma_2\sigma_1)=1$ as $\sigma_1\sigma_2\sigma_1 \in e(s_1s_2s_1)$.
- $Gl(\sigma_1 \sigma_2 \sigma_2) = 2$ as $\sigma_1 \sigma_2 \sigma_2 = (\sigma_1 \sigma_2)(\sigma_2)$

Goal: Given $\beta \in B_{\Gamma}^+$ we will try to read the Garside normal form of β from the action of β on $Com(A_{\Gamma}-mod)$. From this will follow that the action distinglish positive braids.

1.2.5 Linear complexes of projectives.

Lemma: Up to grading shift the only projective modules over A_{Γ} are $\{P_i\}_{i\in I}$. Definition: A complex of projective mod is a complex

$$
M^* = \longrightarrow M_k \longrightarrow M_{k-1} \longrightarrow
$$

such that it is homotopic to a complex all of whose terms are direct sums of $P_i < k >$.

A complex of projectives M^* is linear if the part of homological degree k : M_k is of the form $\bigoplus P_i < k >$, that is, the homological degree and the internal grading coincide⁶.

1.2.6 Example:

$$
\Phi_1(P_2) = P_2 < 0 \rightarrow P_1 < 1 >
$$

is linear. On the other hand

$$
\Phi_1(P_1) = 0 \longrightarrow P_1 < 2 >
$$

is not linear.

More generally, we define $T^{\leq k} \subset Com(A_{\Gamma})$ to consist of all complexes M^* such that $M_s \simeq \oplus P_i < l >, l - s \leq k.^7$

Linear complexes from the topological point of view.

 6 Given any complex of projectives, it is isomorphic to a minimal complex, that is, the Gauss elimination reduces to a unique complex up to homotopy that doesnot depends on the order of the reductions.

⁷We can think of the corresponding t- structure, $Com(A_{\Gamma})$ is triangulated and the Kernel is given by linear complexes.

What is the minimum k such that $\beta \cdot (\bigoplus_i P_i) \in T^{\leq k}$?

Theorem. $\beta = e(w_k)e(w_{k-1}) \cdots e(w_1) \in B_{\Gamma}^+$ has Garside lenght k, iff $\beta \cdot (\bigoplus_i P_i) \in T^{\leq k}$ but $\beta \cdot (\bigoplus_i P_i) \notin T^{\leq k-1}$.

And to determine $\beta = e(w_k)e(w_{k-1})\cdots e(w_1)$ the decomposition we need to compute w_k , it sufices to determine $i \in I$ such that: $l(s_i w_k) < l(w_k) \in W_{\Gamma}$.

1.2.7 Theorem

$$
\{i \in I | l(s_i w_k) < l(w_k)\} = \{i \in I | P_i \in T^{=k}(\beta_j \otimes P_j)\}
$$

here $P_i \in T^{=k}$ means that $P_i \le m + k >$ occurs in homological degree m in a minimal complex for $\beta(\otimes_i P_J)$.

By this theorem, after iteration eventurally we will have a linear complex, and then we also have the corresponding coeficients.

1.2.8 Corollary

The action of the Braid group on $Com(A_{\Gamma} - mod)$ distinguishes positive braids. That is, if $\beta_1, \beta_2 \in B_{\Gamma}^+$ ${}_{\Gamma}^{+}, \beta_1(\otimes P_i) = \beta_2(\otimes P_i)$ iff $\beta_1 = \beta_2$.

1.2.9 Corollary

The map of monoids $\beta_{\Gamma}^+ \to \beta_{\Gamma}$ is injective.

As we just checked that the map $B_{\Gamma}^+ \to B_{\Gamma} \to End(Com-A_{\Gamma})$ is injective, so the factors are injective.

1.2.10 Proposition

Suppose Γ is of finte type, ADE, then the action of B_{Γ} on a set X is faithful iff the restriction to B_{Γ}^{+} $_{\Gamma}^+$ is faithful, that is the action distinguish positive braids. Proof: We'll show that any braid $\beta \in B_{\Gamma}$ can be writen as $\beta_+ \beta_-, \beta_+ \in \mathbb{T}$ his B_{Γ}^+ $_{\Gamma}^{+}, \beta_{-} \in (B_{\Gamma}^{+})$ $_{\Gamma}^{+})^{-1}.$

requires a review.

To see this, let $\Delta = e(w_0), w_0$ the longest element of W_{Γ} , then ⁸

- $\sigma_i^{-1} \triangle \in B_{\Gamma}^+$ Γ ,
- $\bullet\ \Delta \sigma_i \Delta^{-1} \in B^+_\Gamma$ Γ .

⁸for example, for $\Gamma = A_n, \Delta = e_1(e_2e_1)(e_3e_2e_1)\cdots(e_{n-1}e_{n-2}\cdots e_2e_1)$

then in a decomposition $\beta = \sigma_{i_1}^{\epsilon_{i_1}}$ $\frac{\epsilon_{i_1}}{i_1}\sigma_{i_2}^{\epsilon_{i_2}}$ $\frac{\epsilon_{i_2}}{i_2}\cdots \sigma_{i_m}^{\epsilon_{i_m}}$ $\frac{\epsilon_{im}}{i_m}$ replace any appearance of σ^{-1} by $\Delta^{-1}\alpha, \alpha \in B^+ \Gamma$ and get a relation of the form $\beta = \sigma_{i_1} \cdots \Delta^{-1} \cdots \sigma_{i_k}$ and move all Δ^{-1} to the right to obtain the desired decomposition.

1.2.11 Corollary

The action of β_{Γ} on $Com(A_{\Gamma} - mod)$ is faithful when Γ is of type ADE.

Remark. The faithfulness result implies other such results for several other categorial actions. Notably: Rouquiers action.